Temperature, Temperature an intensive variable

From Vototo

Version ID# 763 by
Press the "Improve" button to call for a new round of election and submit a challenging revision.
Jump to: navigation, search


A temperature is a numerical measure of hot and cold. Its measurement is by detection of heat radiation, particle velocity, kinetic energy, or most commonly, by the bulk behavior of a thermometric material. It may be calibrated in any of various temperature scales, Celsius, Fahrenheit, Kelvin, etc.


In thermodynamic terms, temperature is an intensive variable because it is equal to a differential coefficient of one extensive variable with respect to another, for a given body. It thus has the dimensions of a ratio of two extensive variables. In thermodynamics, two bodies are often considered as connected by contact with a common wall, which has some specific permeability properties. Such specific permeability can be referred to a specific intensive variable. An example is a diathermic wall that is permeable only to heat; the intensive variable for this case is temperature. When the two bodies have been in contact for a very long time, and have settled to a permanent steady state, the relevant intensive variables are equal in the two bodies; for a diathermal wall, this statement is sometimes called the zeroth law of thermodynamics.Münster, A. (1970), Classical Thermodynamics, translated by E.S. Halberstadt, Wiley–Interscience, London, ISBN 0-471-62430-6, pp. 49, 69.Bailyn, M. (1994). A Survey of Thermodynamics, American Institute of Physics Press, New York, ISBN 0-88318-797-3, pp. 14–15, 214.

In particular, when the body is described by stating its internal energy , an extensive variable, as a function of its entropy , also an extensive variable, and other state variables , with ), then the temperature is equal to the partial derivative of the internal energy with respect to the entropy:

T = \left ( \frac\partial S} \right )_\, .\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)Callen, H.B. (1960/1985), Thermodynamics and an Introduction to Thermostatistics, (first edition 1960), second edition 1985, John Wiley & Sons, New York, ISBN 0–471–86256–8, pp. 146–148.

Likewise, when the body is described by stating its entropy as a function of its internal energy , and other state variables , with , then the reciprocal of the temperature is equal to the partial derivative of the entropy with respect to the internal energy:

\frac T} = \left ( \frac\partial U} \right )_\, .\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3)

The above definition, equation (1), of the absolute temperature is due to Kelvin. It refers to systems closed to transfer of matter, and has special emphasis on directly experimental procedures. A presentation of thermodynamics by Gibbs starts at a more abstract level and deals with systems open to the transfer of matter; in this development of thermodynamics, the equations (2) and (3) above are actually alternative definitions of temperature.

Copyright: Attribute—Share Alike

External Links

  • WikipediaAn elementary introduction to temperature aimed at a middle school audiencefrom Oklahoma State UniversityAverage yearly temperature by country

Space reserved for Vototo Advertising Program

Content specific ad placement

Voicing the ONLY opinion that counts

System Design by Penpegraphy Tool+Die — Silicon Valley U.S.A.

Reserved for Vototo Advertising Program

(in planning)

Personal tools