Temperature, Theoretically based scales

From Vototo

Version ID# 760 by 198.51.100.18
Press the "Improve" button to call for a new round of election and submit a challenging revision.
Jump to: navigation, search

Summary

A temperature is a numerical measure of hot and cold. Its measurement is by detection of heat radiation, particle velocity, kinetic energy, or most commonly, by the bulk behavior of a thermometric material. It may be calibrated in any of various temperature scales, Celsius, Fahrenheit, Kelvin, etc.

Details

Theoretically based temperature scales are based directly on theoretical arguments, especially those of thermodynamics, of kinetic theory, and of quantum mechanics. They rely on theoretical properties of idealized devices and materials. They are more or less comparable with practically feasible physical devices and materials. Theoretically based temperature scales are used to provide calibrating standards for practical empirically based thermometers.

The accepted fundamental thermodynamic temperature scale is the Kelvin scale, based on an ideal cyclic process envisaged for a Carnot heat engine.

An ideal material on which a temperature scale can be based is the ideal gas. The pressure exerted by a fixed volume and mass of an ideal gas is directly proportional to its temperature. Some natural gases show so nearly ideal properties over suitable temperature ranges that they can be used for thermometry; this was important during the development of thermodynamics, and is still of practical importance today. The ideal gas thermometer is, however, not theoretically perfect for thermodynamics. This is because the entropy of an ideal gas at its absolute zero of temperature is not a positive semi-definite quantity, which puts the gas in violation of the third law of thermodynamics. The physical reason is that the ideal gas law, exactly read, refers to the limit of infinitely high temperature and zero pressure.

Measurement of the spectrum of electromagnetic radiation from an ideal three-dimensional black body can provide an accurate temperature measurement because the frequency of maximum spectral radiance of black-body radiation is directly proportional to the temperature of the black body; this is known as Wien's displacement law, and has a theoretical explanation in Planck's law and the Bose–Einstein law.

Measurement of the spectrum of noise-power produced by an electrical resistor can also provide an accurate temperature measurement. The resistor has two terminals and is in effect a one-dimensional body. The Bose-Einstein law for this case indicates that the noise-power is directly proportional to the temperature of the resistor and to the value of its resistance and to the noise band-width. In a given frequency band, the noise-power has equal contributions from every frequency, and is called Johnson noise. If the value of the resistance is known then the temperature can be found.

If molecules, or atoms, or electrons, are emitted from a material and their velocities are measured, the spectrum of their velocities often nearly obeys a theoretical law called the Maxwell–Boltzmann distribution, which gives a well-founded measurement of temperatures for which the law holds. There have not yet been successful experiments of this same kind that directly use the Fermi–Dirac distribution for thermometry, but perhaps that will be achieved in future.

Copyright: Attribute—Share Alike

External Links

  • WikipediaAn elementary introduction to temperature aimed at a middle school audiencefrom Oklahoma State UniversityAverage yearly temperature by country

Space reserved for Vototo Advertising Program

Content specific ad placement

Voicing the ONLY opinion that counts

System Design by Penpegraphy Tool+Die — Silicon Valley U.S.A.

Reserved for Vototo Advertising Program

(in planning)

Personal tools